If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2/36-2=2
We move all terms to the left:
q^2/36-2-(2)=0
We add all the numbers together, and all the variables
q^2/36-4=0
We multiply all the terms by the denominator
q^2-4*36=0
We add all the numbers together, and all the variables
q^2-144=0
a = 1; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·1·(-144)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*1}=\frac{-24}{2} =-12 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*1}=\frac{24}{2} =12 $
| 2÷3y+7=15 | | 8t^2/4=122 | | -6x=-24;+4 | | 4x-8+1x=2 | | -6x=-24;4 | | 2/a^2=60 | | Y^2-8y-4=0 | | 5g+7=5g-1-g | | 3r^2=6 | | 2/5z=3 | | 82+7d=88+6d | | 6x+98=3x+197 | | 2/3(6x+3)=4x=2 | | x^2−14x−72=0 | | f(1.75)=1/1,75-2 | | 2/3((6x+3)=4x=2 | | 61+9d=69+8d | | Y=-4x+9; | | 4(x-3)^2=16 | | x+0.07X=1200 | | x^2+7/8x−1/8=0 | | 8x^2−7x+1=0 | | 119+8x=128+5x | | 22/11=b22/11 | | 2x^2−5x−6=0 | | 2x−(0)=−3 | | -2×-8/10-22-x/3=2 | | h•6+-12/3=0 | | (1/2y)=(3/y)+(1/6) | | 12y=3y+1612y=3y+16 | | t/7-11=24 | | 2x-12+12=x+8 |